armax.ls.fit {hydromad} | R Documentation |
Calibrate unit hydrograph transfer function models (armax
or expuh
) using Least Squares with prefiltering.
armax.ls.fit(DATA, order = hydromad.getOption("order"), delay = hydromad.getOption("delay"), prefilter = hydromad.getOption("prefilter"), warmup = hydromad.getOption("warmup"), normalise = FALSE, fixed.ar = NULL, weights = NULL, initX = TRUE, na.action = na.pass, trace = hydromad.getOption("trace")) expuh.ls.fit(DATA, order = hydromad.getOption("order"), delay = hydromad.getOption("delay"), quiet = FALSE, ...)
DATA |
a
|
order |
the transfer function order. See |
delay |
delay (lag time / dead time) in number of time steps. If missing, this will be estimated from the cross correlation function. |
prefilter |
|
warmup |
|
normalise |
|
fixed.ar |
|
weights |
|
initX |
|
na.action |
|
trace |
|
... |
passed on to |
quiet |
to suppress the message when re-fitting if non-physical poles (i.e. negative or imaginary poles) are detected. |
In normal usage, one would not call these functions directly, but
rather specify the routing fitting method for a hydromad
model
using that function's rfit
argument. E.g. to specify fitting an
expuh
routing model by least squares one could write
hydromad(..., routing = "expuh", rfit = "ls")
which uses the default order, hydromad.getOption("order")
, or
hydromad(..., routing = "expuh", rfit = list("ls", order = c(2,1)))
.
a tf
object, which is a list with components
coefficients |
the fitted parameter values. |
fitted.values |
the fitted values. |
residuals |
the residuals. |
delay |
the (possibly fitted) delay time. |
Felix Andrews felix@nfrac.org
Jakeman
armax
,
expuh
,
armax.sriv.fit
,
arima
U <- ts(c(0, 0, 0, 1, rep(0, 30), 1, rep(0, 20))) Y <- expuh.sim(lag(U, -1), tau_s = 10, tau_q = 2, v_s = 0.5, v_3 = 0.1) set.seed(0) Yh <- Y * rnorm(Y, mean = 1, sd = 0.2) fit1 <- armax.ls.fit(ts.union(U = U, Q = Yh), order = c(2, 2), warmup = 0) fit1 xyplot(ts.union(observed = Yh, fitted = fitted(fit1)), superpose = TRUE)