armax.sriv.fit {hydromad}R Documentation

Estimate transfer function models by Simple Refined Instrumental Variables method.

Description

Calibrate unit hydrograph transfer function models (armax or expuh) using Simple Refined Instrumental Variables (SRIV) method.

Usage

armax.sriv.fit(DATA,
           order = hydromad.getOption("order"),
           delay = hydromad.getOption("delay"),
           noise.order = hydromad.getOption("riv.noise.order"),
           fixed.ar = NULL,
           ...,
           fallback = TRUE,
           na.action = na.pass,
           epsilon = hydromad.getOption("sriv.epsilon"),
           max.iterations = hydromad.getOption("sriv.iterations"))

expuh.sriv.fit(DATA,
              order = hydromad.getOption("order"),
              delay = hydromad.getOption("delay"),
              quiet = FALSE,
              ...)

Arguments

DATA

a ts-like object with named columns:

U

observed input time series.

Q

observed output time series.

order

the transfer function order. See armax.

delay

delay (lag time / dead time) in number of time steps. If missing, this will be estimated from the cross correlation function.

noise.order
fixed.ar
...

further arguments may include

prefilter
initX
trace

~~Describe trace here~~

fallback
na.action
epsilon
max.iterations
quiet

to suppress the message when re-fitting if non-physical poles (i.e. negative or imaginary poles) are detected.

Details

In normal usage, one would not call these functions directly, but rather specify the routing fitting method for a hydromad model using that function's rfit argument. E.g. to specify fitting an expuh routing model by SRIV one could write

hydromad(..., routing = "expuh", rfit = "sriv")

which uses the default order, hydromad.getOption("order"), or

hydromad(..., routing = "expuh", rfit = list("sriv", order = c(2,1))).

Value

a tf object, which is a list with components

coefficients

the fitted parameter values.

fitted.values

the fitted values.

residuals

the residuals.

delay

the (possibly fitted) delay time.

Author(s)

Felix Andrews felix@nfrac.org

References

Young, P. C. (2008). The refined instrumental variable method. Journal Européen des Systèmes Automatisés 42 (2-3), 149-179. http://dx.doi.org/10.3166/jesa.42.149-179

Jakeman, A. J., G. A. Thomas and C. R. Dietrich (1991). System Identification and Validation for Output Prediction of a Dynamic Hydrologic Process, Journal of Forecasting 10, pp. 319–346.

Ljung, Lennart (1999). System Identification: Theory for the User (second edition). Prentice Hall. pp. 224-226, 466.

See Also

armax, expuh

Examples

U <- ts(c(0, 0, 0, 1, rep(0, 30), 1, rep(0, 20)))
Y <- expuh.sim(lag(U, -1), tau_s = 10, tau_q = 2, v_s = 0.5, v_3 = 0.1)
set.seed(0)
Yh <- Y * rnorm(Y, mean = 1, sd = 0.2)
fit1 <- armax.sriv.fit(ts.union(U = U, Q = Yh),
                       order = c(2, 2), warmup = 0)
fit1
xyplot(ts.union(observed = Yh, fitted = fitted(fit1)),
       superpose = TRUE)
[Package hydromad version 0.9-18 Index]