estimateDelayFrac {hydromad} | R Documentation |
Optimises the delay TDopt
using lagFrac
to maximise the correlation between the delayed input
time series and (rises in) the corresponding time series
estimateDelayFrac(DATA, rises = TRUE, lag.max = hydromad.getOption("max.delay"))
DATA |
a
|
rises |
use only rises in the output to estimate delay. |
lag.max |
largest delay (in time steps) to consider. |
estimateDelay
may be preferred if there's no good reason
to have a fractional lag/redistribution of the input across days.
The estimated delay as an integer number of time steps.
Joseph Guillaume
estimateDelay
, lagFrac
L<-0.6 ## Lag of 0.6 P <- c(2,0,5,1,6,10,0,0,0) V1<-lagFrac(P,L) estimateDelay(cbind(P,V1), rises = FALSE) estimateDelayFrac(cbind(U=P,Q=V1),lag.max=5,rises=FALSE)